[1] Wang L, Zhang H, Ruan Y, et al.Tuberculosis prevalence in China, 1990-2010; a longitudinal analysis of national survey data[J]. Lancet, 2014, 383(9934):2057-2064. [2] Manjelievskaia J, Erck D, Piracha S, Schrager L.Drug-resistant TB: deadly, costly and in need of a vaccine[J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2016, 110(3):186-191. [3] Menzies NA, Gomez GB, Bozzani F, et al.Cost-effectiveness and resource implications of aggressive action on tuberculosis in China, India, and South Africa: a combined analysis of nine models[J]. The Lancet Global healthm, 2016, 4(11):816-826. [4] Kiran D, Podell BK, Chambers M,et al.Host-directed therapy targeting the Mycobacterium tuberculosis granuloma: a review[J]. Seminars in immunopathology, 2016, 38(2):167-183. [5] Restrepo BI.Metformin: Candidate host-directed therapy for tuberculosis in diabetes and non-diabetes patients[J]. Tuberculosis, 2016, 101(309):69-72. [6] Wallis RS, Hafner R.Advancing host-directed therapy for tuberculosis[J]. Nat Rev Immunol, 2015, 15(4):255-263. [7] Zumla A, Rao M, Wallis RS, et al.Host-directed therapies for infectious diseases: current status, recent progress, and future prospects[J]. The Lancet Infectious diseases, 2016,16(4):e47-63. [8] Mayer-Barber KD, Andrade BB, Oland SD, et al.Host-directed therapy of tuberculosis based on interleukin-1 and type I interferon crosstalk[J]. Nature, 2014, 511(7507):99-103. [9] Tobin DM, Roca FJ, Oh SF, et al.Host genotype-specific therapies can optimize the inflammatory response to mycobacterial infections[J]. Cell, 2012, 148(3):434-446. [10] Maiga M, Agarwal N, Ammerman NC, et al.Successful shortening of tuberculosis treatment using adjuvant host-directed therapy with FDA-approved phosphodiesterase inhibitors in the mouse model[J]. PloS one, 2012, 7(2):e30749. [11] Singhal A, Jie L, Kumar P,et al.Metformin as adjunct antituberculosis therapy[J]. Sci Transl Med, 2014, 6(263):263ra159. [12] Tobin DM, Ramakrishnan L.TB: the Yin and Yang of lipid mediators[J]. Curr Opin Pharmacol, 2013, 13(4):641-645. [13] Vilaplana C, Marzo E, Tapia G, et al.Ibuprofen therapy resulted in significantly decreased tissue bacillary loads and increased survival in a new murine experimental model of active tuberculosis[J]. J Infect Dis, 2013, 208(2):199-202. [14] Cai Y, Yang Q, Liao M, et al.xCT increases tuberculosis susceptibility by regulating antimicrobial function and inflammation[J]. Oncotarget, 2016, 7(21):31001-31013. [15] Tukvadze N, Sanikidze E, Kipiani M, et al.High-dose vitamin D3 in adults with pulmonary tuberculosis: a double-blind randomized controlled trial[J]. Am J Clin Nutr, 2015, 102(5):1059-1069. [16] Daley P, Jagannathan V, John KR, et al.Adjunctive vitamin D for treatment of active tuberculosis in India: a randomised, double-blind, placebo-controlled trial[J]. Lancet Infect Dis, 2015, 15(5):528-534. [17] Vilcheze C, Hartman T, Weinrick B,et al.Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction[J]. Nat Commun, 2013, 4(5):1881. [18] Jurado JO, Alvarez IB, Pasquinelli V,et al.Programmed death (PD)-1:PD-ligand 1/PD-ligand 2 pathway inhibits T cell effector functions during human tuberculosis[J]. J Immunol, 2008, 181(1):116-125. [19] Singh A, Mohan A, Dey AB, et al.Inhibiting the programmed death 1 pathway rescues Mycobacterium tuberculosis-specific interferon gamma-producing T cells from apoptosis in patients with pulmonary tuberculosis[J]. J Infect Dis, 2013, 208(4):603-615. [20] Sada-Ovalle I, Chavez-Galan L, Torre-Bouscoulet L,et al.The Tim3-galectin 9 pathway induces antibacterial activity in human macrophages infected with Mycobacterium tuberculosis[J]. J Immunol, 2012, 189(12):5896-5902. [21] Sada-Ovalle I, Ocana-Guzman R, Perez-Patrigeon S, et al.Tim-3 blocking rescue macrophage and T cell function against Mycobacterium tuberculosis infection in HIV+ patients[J]. J Int AIDS Soc, 2015, 18(1):20078. [22] Shah JA, Vary JC, Chau TT, et al.Human TOLLIP regulates TLR2 and TLR4 signaling and its polymorphisms are associated with susceptibility to tuberculosis[J]. J Immunol, 2012, 189(4):1737-1746. [23] Hawn TR, Dunstan SJ, Thwaites GE, et al.A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis[J]. J Infect Dis, 2006, 194(8):1127-1134. [24] Ocejo-Vinyals JG, de Mateo EP, Hoz MA, et al. The IL-17 G-152A single nucleotide polymorphism is associated with pulmonary tuberculosis in northern Spain[J]. Cytokine, 2013, 64(1):58-61. [25] Zhang G, Chen X, Chan L, et al.An SNP selection strategy identified IL-22 associating with susceptibility to tuberculosis in Chinese[J]. Sci Rep, 2011, 1(2):20. [26] Zhang G, Zhou B, Li S, et al.Allele-specific induction of IL-1beta expression by C/EBPbeta and PU.1 contributes to increased tuberculosis susceptibility[J]. PLoS Pathog, 2014, 10(10):e1004426. [27] Zhang G, Zhou B, Wang W,et al.A functional single-nucleotide polymorphism in the promoter of the gene encoding interleukin 6 is associated with susceptibility to tuberculosis[J]. J Infect Dis, 2012, 205(11):1697-1704. [28] Khor CC, Vannberg FO, Chapman SJ,et al.CISH and susceptibility to infectious diseases[J]. N Engl J Med, 2010, 362(22):2092-2101. [29] Khor CC, Chapman SJ, Vannberg FO, et al.A Mal functional variant is associated with protection against invasive pneumococcal disease, bacteremia, malaria and tuberculosis[J]. Nat Genet, 2007, 39(4):523-528. |