[1] Sui Y, Wei Y, Zhao D.Computer-aided lung nodule recognition by SVM classifier based on combination of random undersampling and SMOTE[J].Comput Math Methods Med, 2015, 2015(p1): 368674. [2] 曹恩涛, 范丽, 肖湘生.CT计算机辅助检测与诊断对肺癌早期诊断的应用与进展[J].国际医学放射学杂志, 2016, 39(1):55-60. [3] . Sahiner B, Chan HP, Hadjiiski LM, et al.Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: analysis of an observer performance study by nodule size.[J]. Acad Radiol, 2009, 16(12):1518-1530. [4] Xia Y, Lu SH, Wen Ling-feng, et al.Automated Identification of Dementia Using FDG-PET Imaging[J].Biomed Res Int, 2014, 2014(5):421743. [5] Zhou T, Lu HL, Zhang JJ, et al.Pulmonary Nodule Detection Model Based on SVM and CT Image Feature-Level Fusion with Rough Sets[J]. Biomed Res Int, 2016, 2016(18):8052436. [6] Tartar A, Akan A, Kilic N.A novel approach to malignant-benign classification of pulmonary nodules by using ensemble learning classifiers[J]. Conf Proc IEEE Eng Med Biol Soc, 2014, 2014(36): 4651-4654. [7] 胡伟俭, 陈为, 冯浩哲, 等.应用于平扫CT图像肺结节检测的深度学习方法综述[J].浙江大学学报(理学版), 2017, 44(4):379-384. [8] Lecun Y, Bengio Y, Hinton G.Deep learning[J]. Nature, 2015, 521(7553):436-444. [9] Naqi S M, Sharif M, Yasmin M.Multistage segmentation model and SVM-ensemble for precise lung nodule detection[J]. Int J Comput Assist Radiol Surg, 2018, 13(7):1083-1095. [10] 张鹏, 徐欣楠, 王洪伟, 等.基于深度学习的计算机辅助肺癌诊断方法[J].计算机辅助设计与图形学学报, 2018, 30(1):90-99. [11] Lee M C, Boroczky L, Sungur-Stasik K, et al.Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction[J]. Artif Intell Med, 2010, 50(1):43-53. [12] Orozco HM, Villegas OOV, Vianey G C.et al.Automated system for lung nodules classification based on wavelet feature descriptor and support vector machine[J]. Biomed Eng Online, 2015;14(1):9. [13] Kuruvilla J, Gunavathi K.Lung cancer classification using neural networks for CT images[J]. Comput Methods Programs Biomed, 2014, 113(1):202-209. [14] Murphy K, Van GB, Schilham AM, et al.A large-scale evaluation of automatic pulmonary nodule detection in chest CT using local image features and k-nearest-neighbour classification[J]. Med Image Anal, 2009, 13(5):757-770. [15] Lee SL, Kouzani AZ, Hu EJ.Random forest based lung nodule classification aided by clustering[J]. Comput Med Imaging Graph, 2010, 34(7):535-542. [16] Li W, Cao P, Zhao D, et al.Pulmonary Nodule Classification with Deep Convolutional Neural Networks on Computed Tomography Images[J].Comput Math Methods Med, 2016, 2016:6215085. [17] Setio AA, Ciompi F, Litjens G, et al.Pulmonary Nodule Detection in CT Images: False Positive Reduction Using Multi-View Convolutional Networks[J]. IEEE Trans Med Imaging, 2016, 35(5):1160-1169. [18] Jin H, Li Z, Tong R, et al.A deep 3D residual CNN for false-positive reduction in pulmonary nodule detection[J]. Med Phys, 2018, 45(5):2097-2107. [19] Aberle D R, Adams A M, Berg C D, et al.Reduced lung-cancer mortality with low-dose computed tomographic screening[J]. N Engl J Med, 2011, 365(5):395-409. [20] Van Riel SJ, Sánchez, Clara I, et al.Observer Variability for Classification of Pulmonary Nodules on Low-Dose CT Images and Its Effect on Nodule Management[J]. Radiology, 2015, 277(3):863-871. [21] Jacobs C, Van Rikxoort EM, Scholten ET, et al.Solid, part-solid, or non-solid?: classification of pulmonary nodules in low-dose chest computed tomography by a computer-aided diagnosis system[J]. Invest Radiol, 2015, 50(3):168-173. [22] Shaukat F, Raja G, Gooya A, et al.Fully automatic detection of lung nodules in CT images using a hybrid feature set[J]. Med Phys, 2017, 44(7):3615-3629. [23] Niehaus R, Stan Raicu D, Furst J, et al.Toward Understanding the Size Dependence of Shape Features for Predicting Spiculation in Lung Nodules for Computer-Aided Diagnosis[J]. J Digit Imaging, 2015, 28(6):704-717. [24] Mei X, Wang R, Yang W, et al.Predicting malignancy of pulmonary ground-glass nodules and their invasiveness by random forest[J]. J Thorac Dis, 2018, 10(1):458-463. [25] Wang H, Zhao T, Li L C, et al.A hybrid CNN feature model for pulmonary nodule malignancy risk differentiation[J]. J Xray Sci Technol, 2018, 26(2):171-187. [26] Sun W, Zheng B, Qian W.Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis[J]. Comput Biol Med, 2017, 89(11):530-539. [27] Shen W, Zhou M, Yang F, et al.Multi-scale Convolutional Neural Networks for Lung Nodule Classification[J]. Inf Process Med Imaging, 2015, 24(12):588-599. [28] Jeon KN, Goo JM, Lee CH, et al.Computer-aided nodule detection and volumetry to reduce variability between radiologists in the interpretation of lung nodules at low-dose screening computed tomography[J]. Invest Radiol, 2012, 47(8):457-461. [29] Zheng B, Hardesty LA, Poller WR, et al.Mammography with computer-aided detection: reproducibility assessment initial experience[J]. Radiology, 2003, 228(1):58-62. [30] Hua KL, Hsu CH, Hidayati SC, et al.Computer-aided classification of lung nodules on computed tomography images via deep learning technique[J]. Onco Targets Ther, 2015, 8(22):2015-2022. [31] Ciompi F, Chung K, Riel SJV, et al.Towards automatic pulmonary nodule management in lung cancer screening with deep learning[J]. Sci Rep, 2016, 7:46479. [32] Kang G, Liu K, Hou B, et al.3D multi-view convolutional neural networks for lung nodule classification[J]. PLoS One, 2017, 12(11):e0188290. [33] Wang S, Zhou M, Gevaert O, et al.A multi-view deep convolutional neural networks for lung nodule segmentation[J]. Conf Proc IEEE Eng Med Biol Soc, 2017, 2017:1752-1755. [34] Liu S, Xie Y, Jirapatnakul A, et al.Pulmonary nodule classification in lung cancer screening with three-dimensional convolutional neural networks[J]. J Med Imaging (Bellingham), 2017, 4(4):041308. [35] Nibali A, He Z, Wollersheim D.Wollersheim, Pulmonary nodule classification with deep residual networks[J]. Int J Comput Assist Radiol Surg, 2017, 12(10): 1799-1808. [36] Lin H, Chen Z, Wang W.A pulmonary nodule view system for the Lung Image Database Consortium (LIDC)[J]. Acad Radiol, 2011, 18(9):1181-1185. |