[1] World Health Organization.WHO Coronavirus Disease (COVID-19) Dashboard[EB/OL].[2020-11-18].https://www.covid19.who.int. [2] World Health Organization.WHO:Draft landscape of COVID-19 candidate vaccines[EB/OL].[2020-11-18].https://www.who.int/publications/m/item/draft-landscape-of-covid-19-candidate-vaccines. [3] World Health Organization.WHO target product profiles for COVID-19 vaccines[EB/OL].https://www.who.int/publications/m/item/who-target-product-profiles-for-covid-19-vaccines. [4] Poland G,Ovsyannikova I,Crooke S,et al.ARS-CoV-2 Vaccine Development:Current Status[J].Mayo Clin Proc,2020,95(10):2172-2188. [5] Su S,Du L,Jiang S.Learning from the past:development of safe and effective COVID-19 vaccines[J].Nat Rev Microbiol,2020,10:1-9. [7] Chiu SS,Chan KH,Chu KW,et al.Human coronavirus NL63 infection and other coronavirus infections in children hospitalized with acute respiratory disease in Hong Kong,China[J].Clin Infect Dis,2005,40(12):1721-1729 [7] Gorse GJ,O’Connor TZ,Hall SL,et al.Human coronavirus and acute respiratory illness in older adults with chronic obstructive pulmonary disease[J].JInfect Dis,2009,199(6):847-857. [8] Jean A,Quach C,Yung A,et al.Severity and outcome associated with human coronavirus OC43 infections among children[J].Pediatr Infect Dis J,2013,32(4):325-329 [9] Jevšnik M,Uršic T,Zigon N,et al.Coronavirus infections in hospitalized pediatric patients with acute respiratory tract disease[J].BMC Infect Dis,2012,12:365. [10] Lu G,Wang Q,Gao GF.Bat-to-human:spike features determining ‘host jump’of coronaviruses SARS-CoV,MERS-CoV,and beyond[J].Trends Microbiol,2015,23(8):468-478 [11] Liu W,Fontanet A,Zhang PH,et al.Two-year prospective study of the humoral immune response of patients with severe acute respiratory syndrome[J].J Infect Dis,2006,193(6):792-795 [12] Liu WJ,Zhao M,Liu K,et al.T-cell immunity of SARS-CoV:Implications for vaccine development against MERS-CoV[J].Antiviral Res,2017,137:82-92 [13] Zhou P,Yang X,Wang X,et al.A pneumonia outbreak associated with a new coronavirus of probable bat origin[J].Nature,2020,579(7798):270-273 [14] Christoph K,Matthias Zehner,Timm Weber,et al.Longitudinal isolation of potent near-germline SARS-CoV-2-neutralizing antibodies from COVID-19 patients[J].Cell,2020,182(4):843-854 [15] Ann MA,Katja F,Michael AS,et al.A perspective on potential antibody-dependent enhancement of SARS-CoV-2[J].Nature,2020,584(7821):353-363. [16] Braun J,Loyal L,Frentsch M,et al.SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19[J].Nature,2020,587(7833):270-274. [17] Grifoni A,Weiskopf D,Ramirez SI,et al.Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID19 disease and unexposed individuals[J].Cell,2020,1 81(7):1489-1501.e15. [18] Juno JA,Tan H-X,Lee WS,et al.Humoral and circulating follicular helper T cell responses in recovered patients with COVID-19[J].Nat Med,2020,26(9):1428-1434. [19] Lu R,Zhao X,Li J,et al.Genomic characterisation and epidemiology of 2019 novel coronavirus:implications for virus origins and receptor binding[J].Lancet,2020,395(10224):565-574. [20] Verdecchia P,Cavallini C,Spanevello A,et al.The pivotal link between ACE2 deficiency and SARS-CoV-2 infection[J].Eur J Intern Med,2020,76:14-20. [21] Herrera NG,Morano NC,Celikgil A,et al.Characterization of the SARS-CoV-2 S protein:biophysical,biochemical,structural,and antigenic analysis[J].bioRxiv,2020,06.14.doi:10.1101/2020.06.14.150607.Preprint. [22] Hoffmann M,Kleine-Weber H,Schroeder S,et al.SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J].Cell,2020,181(2):271-.280.e8 [23] Rottier PJM.The Coronavirus Membrane Glycoprotein[M].Berlin:Springer,1995:115-139. [24] Hoffmann M,Kleine-Weber H,Pöhlmann S.A multibasic cleavage site in the spike protein of SARS-CoV-2 is essential for infection of human lung cells[J].Mol Cell,2020,78:779-784. [25] Du L,He Y,Zhou Y,et al.The spike protein of SARS-CoV--a target for vaccine and therapeutic development[J].Nat Rev Microbiol.2009,7(3):226-236. [26] Tseng C,Sbrana E,Iwata-Yoshikawa,et al.Immunization with SARS coronavirus vaccines leads to pulmonary immunopathology on challenge with the SARS virus[J].PLoS One,2012,7(4):e35421. [27] Woo P,Lau S,Wong B,et al.Longitudinal profile of immunoglobulin G (IgG),IgM,and IgA antibodies against the severe acute respiratory syndrome (SARS) coronavirus nucleocapsid protein in patients with pneumonia due to the SARS coronavirus[J].Clin Diagn Lab Immunol,2004,11:665-668. [28] Siu YL,Teoh KT,Lo J,et al.The M,E,and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly,trafficking,and release of virus-like particles[J].J Virol,2008,82(22):11318-11330. [29] Yang J,Wang W,Chen Z,et al.A vaccine targeting the RBD of the S protein of SARS-CoV-2 induces protective immunity[J].Nature,2020,586(7830):572-577. [30] Wang C,Zheng X,Gai W,et al.Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice[J].Antiviral Res,2017,140:55-61. [31] Roberts A,Lamirande EW,Vogel L,et al.Immunogenicity and protective efficacy in mice and hamsters of a bPropiolactone inactivated whole virus SARS-CoV vaccine[J].Viral Immunol,2010,23(5):211-219. [32] Agrawal A,Tao X,Algaissi A,et al.Immunization with inactivated Middle East Respiratory Syndrome coronavirus vaccine leads to lung immunopathology on challenge with live virus[J].Hum Vaccin Immunother,2016,12(9):2351-2356. [33] Deming T,Sheahan M,Heise B,et al.Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epidemic and zoonotic spike variants[J].PLoS Med,2006,3(12):e525. [34] Yasui F,Kai C,Kitabatake M,et al.Prior immunization with severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) nucleocapsid protein causes severe pneumonia in mice infected with SARS-CoV[J].J Immunol,2008,181(9):6337-6348. [35] Chen W,Tao X,Agrawal A,et al.Yeast-expressed SARS-CoV recombinant receptor-binding domain (RBD219-N1) formulated with alum induces protective immunity and reduces immune enhancement[J].bioRxiv,2020,05.15.098079.doi:10.1101/2020.05.15.098079.Preprint. [36] Lee WS,Wheatley AK,Kent SJ,et al.Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies[J].Nat Microbiol,2020,5(10):1185-1191. [37] Fedechkin S,George N,Castrejon A,et al.Conformational flexibility in respiratory syncytial virus G neutralizing epitopes[J].J Virol,2020,94(6):e01879-1919. [38] Capeding MR,Tran N,Hadinegoro S,et al.Clinical efficacy and safety of a novel tetravalent dengue vaccine in healthy children in Asia:a phase 3,randomised,observer-masked,placebo-controlled trial[J].Lancet,2014,384:1358-1365. [39] Lin J,Huang N,Li J,et al.Cross-reactive antibodies against dust mite-derived enolase induce neutrophilic airway inflammation[J].Eur Respir J,2020,13:1902375.Online ahead of print. [40] Cao X.COVID-19:immunopathology and its implications for therapy[J].Nat Rev Immunol,2020,20(5):269-270. [41] Lambert P,Ambrosino D,Andersen S,et al.Consensus summary report for CEPI/BC March 12-13,2020 meeting:assessment of risk of disease enhancement with COVID-19 vaccines[J].Vaccine,2020,38(31):4783-4791. [42] Moore JP,Klasse PJ.SARS-CoV-2 vaccines:‘warp speed' needs mind melds not warped minds[J].JVirol,2020,94(17):e01083-20. [43] Du L,Zhao G,He Y,et al.Receptor-binding domain of SARS-CoV spike protein induces long-term protective immunity in an animal model[J].Vaccine,2007,25:2832-2838. [44] FDA.Recommendations for Investigational COVID-19 Convalescent Plasma[EB/OL].[2020-08-23].https://www.fda.gov/vaccines-blood-biologics/investigational-new-drug-ind-or-device-exemption-ide-process-cber/recommendations-investigational-covid-19-convalescent-plasma [45] Seow J,Doores K.Longitudinal evaluation and decline of antibody responses in SARS-CoV-2 infection[J].Nature Microbiology,2020,5:1598-1607. [46] Zhang YJ,Zeng G,Pan H,et al.Immunogenicity and safety of a SARS-CoV-2 inactivated vaccine in healthy adults aged 18-59 years:report of the randomized,double-blind,and placebo-controlled phase 2 clinical trial[J].med Rxiv,2020,8:1-22. [47] Xia S,Duan K,Zhang Y,et al.Effect of an inactivated vaccine against SARS-CoV-2 on safety and immunogenicity outcomes:interim analysis of 2 randomized clinical trials[J].JAMA,2020,324(10):951-960. [48] Zhu F,Guan X,Li Y,et al.Immunogenicity and safety of a recombinant adenovirus type-5- vectored COVID-19 vaccine in healthy adults aged 18 years or older:a randomised,double-blind,placebo-controlled,phase 2 trial[J].Lancet,2020,396:479-488. [49] Folegatti P,Ewer K,Aley P,et al.Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2:a preliminary report of a phase 1/2,single-blind,randomised controlled trial[J].Lancet,2020,396(10249):467-478. [50] Logunov D,Dolzhikova I,Zubkova O,et al.Safety and immunogenicity of an rAd26 and rAd5 vectorbased heterologous prime-boost COVID-19 vaccine in two formulations:two open,non-randomised phase 1/2 studies from Russia[J].Lancet.2020,396(10255):887-897. [51] Mercado N,Zahn R,Wegmann F,et al.Single-shot Ad26 vaccine protects against SARS-CoV-2 I rhesus macaques[J].Nature,2020,586(7830):583-588. [52] Mulligan M,Lyke K,Kitchin N,et al.Phase 1/2 study of COVID-19 RNA vaccine BNT162b1 in adults[J].Nature,2020,586(7830):589-593. [53] Jackson L,Anderson E,Rouphael N,et al.An mRNA Vaccine against SARS-CoV-2—preliminary report[J].N EngJ Med,2020,383(20):1920-1931. [54] 郝鹏飞,许汪,杜寿文,等.冠状病毒起源、受体及新型冠状病毒检测与疫苗最新研究进展[J/CD].新发传染病电子杂志,2020,5(2):74-78. |