[1] 范琳, 刘一典, 肖和平. 国内《耐药结核病化学治疗指南(2019年)》与相关共识的特色及要点分析[J]. 中国防痨杂志, 2020, 42(2):91-94. [2] QI YC, MA MJ, Li DJ, et al.Multidrug-Resistant and Extensively Drug-Resistant Tuberculosis in Multi-Ethnic Region, Xinjiang Uygur Autonomous Region, China[J]. PLoS ONE, 2012, 34(4):25-35. [3] GUlSHAN V, PENG L, CORAM M, et al. Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs[J]. JAMA, 2016,316(22):2402-2410. [4] 王宇. 全国第五次结核病流行病学抽样调查资料汇编[M]. 军事医学科学出版社, 2011. [5] HWANG S, KIMH E, JIHOON JMD, et al.A novel approach for tuberculosis screening based on deep convolutional neural networks[C]. Medical Imaging: Computer-aided Diagnosis. International Society for Optics and Photonics, 2016, 36(5): 2751-2759. [6] ASAD ZSM, SALMAN HS, BRAM VG, et al.Evaluation of the diagnostic accuracy of Computer-Aided Detection of tuberculosis on Chest radiography among private sector patients in Pakistan[J]. Sci Rep, 2018, 8(1):12339-12348. [7] XIONG Y, BA X,HOU A, et al.Automatic detection of mycobacterium tuberculosis using artificial intelligence[J]. J Thorac Dis, 2018, 10(3):1936-1940. [8] LAKHANI P, SUNDARAMB. Deep learning at chest radiography: automated classification of pulmonary tuberculosis by using convolutional neural networks[J]. Radiology, 2017, 284(2): 574-582. [9] BECKER AS, BLUTHGEN C, PHI VAN VD, et al.Detection of tuberculosis patterns in digital photographs of chest X-ray images using deep learning: feasibility study[J]. Int J Tuberc Lung Dis, 2018, 22(3): 328-335. [10] 周林, 刘二勇. "早诊断及规范治疗肺结核患者"是落实最新国家行业标准及技术规范的精髓[J]. 中国防痨杂志, 2020, 42(9):894-895. [11] LIU L, CHENG J, QUAN Q, et al.A Survey on U-shaped networks in Medical Image Segmentations[J]. Neurocomputing, 2020, 27(8): 216-256. [12] WU Z, SHEN C,HENGELA VD.Wider or Deeper: Revisiting the ResNet Model for Visual Recognition[J]. Pattern Recognition, 2016, 272(3):635-654. [13] SZEGEDY C, VANHOUCKE V, LOFFE S, et al.Rethinking the Inception Architecture for Computer Vision[J]. Dig Liver Dis, 2016:2818-2826. [14] LAKHANI P, SUNDARAM B.Deep Learning at Chest Radiography: AutomatedClassification of Pulmonary Tuberculosis by Using Convolutional Neural Networks[J]. Radiology, 2017, 284(2):574-582. [15] 张广恩, 符彩云, 黄静静,等. 海南省结核分枝杆菌耐药影响因素分析[J]. 公共卫生与预防医学, 2017, 28(1):18-22. [16] MELENDEZ J, SANCHEZCI,PHILIPSEN RHHM, et al.An automated tuberculosis screening strategy combining X-ray-based computer-aided detection and clinical information[J]. Sci Rep, 2016, 6:25265. [17] HOOG AH, MEME HK, VAN DEUTEKOM H, et al.High sensitivity of chest radiograph reading by clinical officers in a tuberculosis prevalence survey[J]. Int J Tuberc Lung Dis, 2011, 15(10):1308-1314. [18] KRIZHEVSKY A, SUTSKEVER I, HINTON GE.ImageNet Classification with Deep Convolutional Neural Networks[C]. NIPS. Curran Associates Inc, 2012, 1097-1105. [19] 国家感染性疾病临床医学研究中心, 深圳市第三人民医院,《中国防痨杂志》编辑委员会. 肺结核活动性判断规范及临床应用专家共识[J]. 中国防痨杂志, 2020, 42(4):301-307. [20] CHUNLI Q, DEMIN Y, YONGHONG S, et al.Computer-aided detection in chest radiography based on artificial intelligence: A survey[J]. Biomed Eng Online, 2018, 17(1):1-23. [21] 闫明艳, 陈根铭, 赖超, 等. 人工智能对肺结核患者病变检出及定性诊断价值研究[J/CD]. 新发传染病电子杂志, 2018, 3(4): 214-217. [22] CAO XW, QIAN Y.Prediction of Multidrug-Resistant TB from CT Pulmonary Images Based on Deep Learning Techniques[J]. Mol Pharm, 2018, 15(10):4326-4335. [23] LURE FYM, JAEGER S, ANTANI S, 等. 自动化显微镜检测和数字化胸片诊断系统在肺结核筛查中的应用[J/CD]. 新发传染病电子杂志, 2017, 2(1):5-9. [24] BAR Y, DIAMANT I, WOLF L, et al.Deep learning with non-medical training used for chest pathology identification[C]. Medical Imaging 2015: Computer-Aided Diagnosis. International Society for Optics and Photonics, 2015: 94140V. [25] HUA KL, HUS CH, HIDAYATIS C, et al.Computer-aided classification of lung nodules on computed tomography images via deep learning technique[J]. Onco Targets Ther, 2015, 8:2015-2022. [26] HWANG S, KIM HE, JIHOONJ MD, et al.A novel approach for tuberculosis screening based on deep convolutional neural networks[C]. Medical Imaging: Computer-aided Diagnosis. International Society for Optics and Photonics, 2016:97852W. |