[1] 何小敏, 咸建春. 关于《慢性乙型肝炎防治指南(2019年版)》的管见[J]. 中华传染病杂志, 2020,38(12):817-819. [2] 中华医学会传染病与寄生虫病学分会肝病学分会. 病毒性肝炎防治方案[J]. 中华肝脏病杂志, 2000, 8(6):324-329. [3] ANTEBY R, KLANG E, HORESH N, et al.Deep learning for noninvasive liver fibrosis classification: A systematic review[J]. Liver Int, 2021, 41(10):2269-2278. [4] 雷丹, 梅英, 齐晓娅, 等. 人工智能在超声医学影像的应用研究进展[J]. 中国医疗器械信息, 2021, 27(7):42-43. [5] BRIGANTI G, LE MOINE O.Artificial Intelligence in Medicine: Today and Tomorrow[J]. Front Med (Lausanne), 2020, 7:27. [6] 王芳, 夏雨薇, 柴象飞, 等. 影像组学分析流程及临床应用的研究进展[J]. 中华解剖与临床杂志, 2021, 26(2):236-241. [7] LECUN Y, BENGIO Y, HINTON G.Deep learning[J]. Nature, 2015,521(7553):436-444. [8] 胡文墨, 杨华瑜, 毛一雷. 基于人工智能的影像组学在肝脏疾病中的应用[J]. 中华普通外科杂志, 2019,(7):646-648. [9] BARNETT R.Liver cirrhosis[J]. Lancet, 2018, 392(10144): 275. [10] Xue LY, Ding H.Current ultrasound-related strategies for assessing liver fibrosis in chronic liver disease[J]. Chin Med J (Engl), 2020, 133(22):2762-2764. [11] 董常峰. 基于弹性成像多模态检测慢性乙型肝炎肝纤维化[J/CD]. 新发传染病电子杂志, 2018, 3(2):128. [12] CASTERA L, PINZANI M.Non-invasive assessment of liver fibrosis: are we ready?[J]. Lancet, 2010, 375(9724):1419-1420. [13] 宋家琳, 刘翔, 章建全, 等. 肝包膜超声图像几何特征定量评估肝纤维化的实验研究[J]. 中华超声影像学杂志, 2018, 27(12):1095-1099. [14] WANG K, LU X, ZHOU H, et al.Deep learning Radiomics of shear wave elastography significantly improved diagnostic performance for assessing liver fibrosis in chronic hepatitis B: a prospective multicentre study[J]. Gut, 2019, 68(4):729-741. [15] POYNARD T, BEDOSSA P, OPOLON P.Natural history of liver fibrosis progression in patients with chronic hepatitis C. The OBSVIRC, METAVIR, CLINIVIR, and DOSVIRC groups[J]. Lancet, 1997, 349(9055):825-832. [16] XUE LY, JIANG ZY, FU TT, et al.Transfer learning radiomics based on multimodal ultrasound imaging for staging liver fibrosis[J]. Eur Radiol, 2020, 30(5):2973-2983. [17] 付甜甜, 姚钊, 丁红, 等. 计算机辅助诊断慢性乙肝患者肝纤维化进程的价值分析[J]. 中华医学杂志, 2019, 99(7):491-495. [18] JEONG HL, IJIN J, TAE WK, et al.Deep learning with ultrasonography: automated classification of liver fibrosis using a deep convolutional neural network[J]. European Radiology, 2020, 30(2):1264-1273. [19] GAO LF, ZHOU RS, DONG CF, et al.Multi-Modal Active Learning For Automatic Liver Fibrosis Diagnosis Based On Ultrasound Shear Wave Elastography[C]. International Symposium on Biomedical Imaging, IEEE, 2021, 410-414. [20] 中华人民共和国国家卫生健康委员会医政医管局. 原发性肝癌诊疗规范(2019年版)[J/CD]. 肝癌电子杂志, 2020, 7(1):5-23. [21] 钟娴, 苏丽娅, 谢晓燕, 等. 肝局灶性病变边界和周围肝组织的弹性特征及其影响因素分析[J]. 中华超声影像学杂志, 2020, 29(4):349-353. [22] 张琪, 董怡, 杨道辉, 等. 超声剪切波黏弹性技术在肝肿瘤良恶性鉴别中的初步临床应用[J]. 中华超声影像学杂志, 2019, 28(9):766-770. [23] MITREA D, NEDEVSCHI S, BADEA R.Automatic Recognition of the Hepatocellular Carcinoma from Ultrasound Images using Complex Textural Microstructure Co-Occurrence Matrices (CTMCM)[C]. Proceedings of the 7th International Conference on Pattern Recognition Applications and Methods, 2018. [24] BREHAR R, MITREA DA, VANCEA F, et al.Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images[J]. Sensors (Basel), 2020, 20(11):3085. [25] SCHMAUCH B, HERENT P, JEHANNO P, et al.Diagnosis of focal liver lesions from ultrasound using deep learning[J]. Diagn Interv Imaging, 2019, 100(4):227-233. [26] YANG Q, WEI J, HAO X, et al.Improving B-mode ultrasound diagnostic performance for focal liver lesions using deep learning: A multicentre study[J]. EBio Medicine, 2020, 56:102777. [27] DIETRICH CF, NOLSOE CP, BARR RG, et al.Guidelines and Good Clinical Practice Recommendations for Contrast Enhanced Ultrasound (CEUS) in the Liver - Update 2020 -WFUMB in Cooperation with EFSUMB, AFSUMB, AIUM, and FLAUS[J]. Ultraschall Med, 2020,41(5):562-585. [28] QIN H, WU YQ, LIN P, et al.Ultrasound Image-Based Radiomics: An Innovative Method to Identify Primary Tumorous Sources of Liver Metastases[J]. J Ultrasound Med, 2021,40(6):1229-1244. [29] WANG W, WU SS, ZHANG JC, et al.Preoperative Pathological Grading of Hepatocellular Carcinoma Using Ultrasomics of Contrast-Enhanced Ultrasound[J]. Acad Radiol, 2021, 28(8):1094-1101. [30] LIU F, LIU D, WANG K, et al.Deep Learning Radiomics Based on Contrast-Enhanced Ultrasound Might Optimize Curative Treatments for Very-Early or Early-Stage Hepatocellular Carcinoma Patients[J]. Liver Cancer, 2020, 9(4):397-413. |