[1] Kyle J L, Harris E.Global spread and persistence of dengue[J]. Annu Rev Microbiol, 2008, 62(1):71-92. [2] Bhatt S, Gething P W, Brady O J, et al.The global distribution and burden of dengue[J]. Nature, 2013, 496(7446):504-507. [3] Hadinegoro S R, Arredondo-Garcia J L, Capeding M R, et al. Efficacy and Long-Term Safety of a Dengue Vaccine in Regions of Endemic Disease[J]. N Engl J Med, 2015, 373(13):1195-1206. [4] Sun H, Chen Q, Lai H.Development of Antibody Therapeutics against Flaviviruses[J]. Int J Mol Sci, 2017, 19(1):54. [5] Rey F A, Stiasny K, Vaney M C, et al.The bright and the dark side of human antibody responses to flaviviruses: lessons for vaccine design[J]. EMBO Rep, 2018, 19(2):206-224. [6] Zhang X, Jia R, Shen H, et al.Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections[J]. Viruses, 2017, 9(11):338. [7] Stettler K, Beltramello M, Espinosa D A, et al.Specificity, cross-reactivity, and function of antibodies elicited by Zika virus infection[J]. Science, 2016, 353(6301):823-826. [8] Mcauley A J, Torres M, Plante J A, et al.Recovery of West Nile Virus Envelope Protein Domain Ⅲ Chimeras with Altered Antigenicity and Mouse Virulence[J]. J Virol, 2016, 90(9):4757-4770. [9] Saejung W, Puttikhunt C, Prommool T, et al.Enhancement of recombinant soluble dengue virus 2 envelope domain Ⅲ protein production in Escherichia coli trxB and gor double mutant[J]. J Biosci Bioeng, 2006,102(4):333-339. [10] Jaiswal S, Khanna N, Swaminathan S.High-level expression and one-step purification of recombinant dengue virus type 2 envelope domain Ⅲ protein in Escherichia coli[J]. Protein Expr Purif, 2004, 33(1):80-91. [11] Zhang Z S, Yan Y S, Weng Y W, et al.High-level expression of recombinant dengue virus type 2 envelope domain Ⅲ protein and induction of neutralizing antibodies in BALB/C mice[J]. J Virol Methods, 2007, 143(2):125-131. [12] Saejung W, Fujiyama K, Takasaki T, et al.Production of dengue 2 envelope domain Ⅲ in plant using TMV-based vector system[J]. Vaccine, 2007, 25(36):6646-6654. [13] Hermida L, Rodriguez R, Lazo L, et al.A fragment of the envelope protein from dengue-1 virus, fused in two different sites of the meningococcal P64k protein carrier, induces a functional immune response in mice[J]. Biotechnol Appl Biochem, 2004, 39(Pt 1):107-114. [14] Izquierdo A, Garcia A, Lazo L, et al.A tetravalent dengue vaccine containing a mix of domain Ⅲ-P64k and domain Ⅲ-capsid proteins induces a protective response in mice[J]. Arch Virol, 2014, 159(10):2597-2604. [15] Batra G, Gurramkonda C, Nemani S K, et al.Optimization of conditions for secretion of dengue virus type 2 envelope domain Ⅲ using Pichia pastoris[J]. J Biosci Bioeng, 2010, 110(4):408-414. [16] Nguyen N L, Kim J M, Park J A, et al.Expression and purification of an immunogenic dengue virus epitope using a synthetic consensus sequence of envelope domain Ⅲ and Saccharomyces cerevisiae[J]. Protein Expr Purif, 2013, 88(2):235-242. [17] Block O K, Rodrigo W W, Quinn M, et al.A tetravalent recombinant dengue domain Ⅲ protein vaccine stimulates neutralizing and enhancing antibodies in mice[J]. Vaccine, 2010, 28(51):8085-8094. [18] Holmes E C.Molecular epidemiology and evolution of emerging infectious diseases[J]. Br Med Bull, 1998,54(3):533-543. [19] Halstead S B, O'Rourke E J. Dengue viruses and mononuclear phagocytes. I. Infection enhancement by non-neutralizing antibody[J]. J Exp Med, 1977, 146(1):201-217. [20] Dejnirattisai W, Jumnainsong A, Onsirisakul N, et al.Cross-reacting antibodies enhance dengue virus infection in humans[J]. Science, 2010, 328(5979):745-748. [21] Fahimi H, Mohammadipour M, Haddad K H, et al.Dengue viruses and promising envelope protein domain Ⅲ-based vaccines[J]. Appl Microbiol Biotechnol, 2018, 102(7):2977-2996. [22] 任守凤,刘文权,曹国梅,等. 重组登革病毒1-4型包膜蛋白EDⅢ的融合表达和免疫学特性研究[J]. 温州医科大学学报, 2016, 46(4):235-240. [23] Etemad B, Batra G, Raut R, et al.An envelope domain Ⅲ-based chimeric antigen produced in Pichia pastoris elicits neutralizing antibodies against all four dengue virus serotypes[J]. Am J Trop Med Hyg, 2008, 79(3):353-363. [24] Suzarte E, Gil L, Valdes I, et al.A novel tetravalent formulation combining the four aggregated domain Ⅲ-capsid proteins from dengue viruses induces a functional immune response in mice and monkeys[J]. Int Immunol, 2015, 27(8):367-379. [25] Gil L, Lazo L, Valdes I, et al.The tetravalent formulation of domain Ⅲ-capsid proteins recalls memory B- and T-cell responses induced in monkeys by an experimental dengue virus infection[J]. Clin Transl Immunology, 2017, 6(6):e148. [26] Simmons M, Nelson W M, Wu S J, et al.Evaluation of the protective efficacy of a recombinant dengue envelope B domain fusion protein against dengue 2 virus infection in mice[J]. Am J Trop Med Hyg, 1998, 58(5):655-662. [27] Simmons M, Murphy G S, Hayes C G.Short report: Antibody responses of mice immunized with a tetravalent dengue recombinant protein subunit vaccine[J]. Am J Trop Med Hyg, 2001, 65(2):159-161. [28] Brandler S, Ruffie C, Najburg V, et al.Pediatric measles vaccine expressing a dengue tetravalent antigen elicits neutralizing antibodies against all four dengue viruses[J]. Vaccine, 2010, 28(41):6730-6739. [29] Izquierdo A, Garcia A, Lazo L, et al.A tetravalent dengue vaccine containing a mix of domain Ⅲ-P64k and domain Ⅲ-capsid proteins induces a protective response in mice[J]. Arch Virol, 2014, 159(10):2597-2604. [30] Mcburney S P, Sunshine J E, Gabriel S, et al.Evaluation of protection induced by a dengue virus serotype 2 envelope domain Ⅲ protein scaffold/DNA vaccine in non-human primates[J]. Vaccine, 2016, 34(30):3500-3507. [31] Khanam S, Pilankatta R, Khanna N, et al.An adenovirus type 5 (AdV5) vector encoding an envelope domain Ⅲ-based tetravalent antigen elicits immune responses against all four dengue viruses in the presence of prior AdV5 immunity[J]. Vaccine, 2009, 27(43):6011-6021. [32] Cockburn J J, Navarro S M, Fretes N, et al.Mechanism of dengue virus broad cross-neutralization by a monoclonal antibody[J]. Structure, 2012, 20(2):303-314. [33] Lok S M, Kostyuchenko V, Nybakken G E, et al.Binding of a neutralizing antibody to dengue virus alters the arrangement of surface glycoproteins[J]. Nat Struct Mol Biol, 2008, 15(3):312-317. [34] Midgley C M, Flanagan A, Tran H B, et al.Structural analysis of a dengue cross-reactive antibody complexed with envelope domain Ⅲ reveals the molecular basis of cross-reactivity[J]. J Immunol, 2012,188(10):4971-4979. [35] Austin S K, Dowd K A, Shrestha B, et al.Structural basis of differential neutralization of DENV-1 genotypes by an antibody that recognizes a cryptic epitope[J]. PLoS Pathog, 2012, 8(10):e1002930. [36] Shrestha B, Brien J D, Sukupolvi-Petty S, et al.The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1[J]. PLoS Pathog, 2010, 6(4):e1000823. [37] Robbiani D F, Bozzacco L, Keeffe J R, et al.Recurrent Potent Human Neutralizing Antibodies to Zika Virus in Brazil and Mexico[J]. Cell, 2017, 169(4):597-609. [38] Robinson L N, Tharakaraman K, Rowley K J, et al.Structure-Guided Design of an Anti-dengue Antibody Directed to a Non-immunodominant Epitope[J]. Cell, 2015, 162(3):493-504. [39] 袁伟壮,杨逸成,刘旭玲,等. 抗体依赖增强效应发生机制研究进展[J]. 中国人兽共患病学报,2017,33(7):650-657. |