[1] Guzman M G, Harris E.Dengue[J]. Lancet, 2015, 385(9966): 453-465. [2] Who. Dengue: Guideline for Diagnosis, Treatment, Prevention and Control[Z]. 2009: 2017. [3] Huang X, Yue Y, Li D, et al.Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy[J]. Sci Rep, 2016, 6: 22303. [4] Diamond M S, Pierson T C.Molecular Insight into Dengue Virus Pathogenesis and Its Implications for Disease Control[J]. Cell, 2015, 162(3): 488-492. [5] Yacoub S, Mongkolsapaya J, Screaton G.The pathogenesis of dengue[J]. Curr Opin Infect Dis, 2013, 26(3): 284-289. [6] St J A, Abraham S N, Gubler D J.Barriers to preclinical investigations of anti-dengue immunity and dengue pathogenesis[J]. Nat Rev Microbiol, 2013, 11(6): 420-426. [7] Thompson M R, Kaminski J J, Kurt-Jones E A, et al. Pattern recognition receptors and the innate immune response to viral infection[J]. Viruses, 2011, 3(6): 920-940. [8] Cao X.Self-regulation and cross-regulation of pattern-recognition receptor signalling in health and disease[J]. Nat Rev Immunol, 2016, 16(1): 35-50. [9] Munoz-Wolf N, Lavelle E C.Innate Immune Receptors[J]. Methods Mol Biol, 2016, 1417: 1-43. [10] Creagh E M, O'Neill L A. TLRs, NLRs and RLRs: a trinity of pathogen sensors that co-operate in innate immunity[J]. Trends Immunol, 2006, 27(8): 352-357. [11] O'Neill L A, Golenbock D, Bowie A G. The history of Toll-like receptors - redefining innate immunity[J]. Nat Rev Immunol, 2013, 13(6): 453-460. [12] Kawasaki T, Kawai T.Toll-like receptor signaling pathways[J]. Front Immunol, 2014, 5: 461. [13] Kawai T, Akira S.The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors[J]. Nat Immunol, 2010, 11(5): 373-384. [14] Bowie A G.Translational mini-review series on Toll-like receptors: recent advances in understanding the role of Toll-like receptors in anti-viral immunity[J]. Clin Exp Immunol, 2007, 147(2): 217-226. [15] Matsumoto M, Oshiumi H, Seya T.Antiviral responses induced by the TLR3 pathway[J]. Rev Med Virol, 2011, 21(2): 67-77. [16] Tsai Y T, Chang S Y, Lee C N, et al.Human TLR3 recognizes dengue virus and modulates viral replication in vitro[J]. Cell Microbiol, 2009, 11(4): 604-615. [17] Conceicao T M, El-Bacha T, Villas-Boas C S, et al. Gene expression analysis during dengue virus infection in HepG2 cells reveals virus control of innate immune response[J]. J Infect, 2010, 60(1): 65-75. [18] Liang Z, Wu S, Li Y, et al.Activation of Toll-like receptor 3 impairs the dengue virus serotype 2 replication through induction of IFN-beta in cultured hepatoma cells[J]. PLoS One, 2011, 6(8): e23346. [19] Sariol C A, Martinez M I, Rivera F, et al.Decreased dengue replication and an increased anti-viral humoral response with the use of combined Toll-like receptor 3 and 7/8 agonists in macaques[J]. PLoS One, 2011, 6(4): e19323. [20] Torres S, Hernandez J C, Giraldo D, et al.Differential expression of Toll-like receptors in dendritic cells of patients with dengue during early and late acute phases of the disease[J]. PLoS Negl Trop Dis, 2013, 7(2): e2060. [21] Chen J, Ng M M, Chu J J.Activation of TLR2 and TLR6 by Dengue NS1 Protein and Its Implications in the Immunopathogenesis of Dengue Virus Infection[J]. PLoS Pathog, 2015, 11(7): e1005053. [22] Modhiran N, Watterson D, Muller D A, et al.Dengue virus NS1 protein activates cells via Toll-like receptor 4 and disrupts endothelial cell monolayer integrity[J]. Sci Transl Med, 2015, 7(304): 142r-304r. [23] Modhiran N, Watterson D, Blumenthal A, et al.Dengue virus NS1 protein activates immune cells via TLR4 but not TLR2 or TLR6[J]. Immunol Cell Biol, 2017, 95(5): 491-495. [24] Alagarasu K, Bachal R V, Memane R S, et al.Polymorphisms in RNA sensing toll like receptor genes and its association with clinical outcomes of dengue virus infection[J]. Immunobiology, 2015, 220(1): 164-168. [25] Carvalho D M, Garcia F G, Terra A P, et al.Elevated dengue virus nonstructural protein 1 serum levels and altered toll-like receptor 4 expression, nitric oxide, and tumor necrosis factor alpha production in dengue hemorrhagic Fever patients[J]. J Trop Med, 2014, 2014: 901276. [26] Modhiran N, Kalayanarooj S, Ubol S.Subversion of innate defenses by the interplay between DENV and pre-existing enhancing antibodies: TLRs signaling collapse[J]. PLoS Negl Trop Dis, 2010, 4(12): e924. [27] Kruif M D, Setiati T E, Mairuhu A T, et al.Differential gene expression changes in children with severe dengue virus infections[J]. PLoS Negl Trop Dis, 2008, 2(4): e215. [28] Goubau D, Deddouche S, Reis E S C. Cytosolic sensing of viruses[J]. Immunity, 2013, 38(5): 855-869. [29] Kato H, Takeuchi O, Sato S, et al.Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses[J]. Nature, 2006, 441(7089): 101-105. [30] Fullam A, Schroder M.DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication[J]. Biochim Biophys Acta, 2013, 1829(8): 854-865. [31] Loo Y M, Fornek J, Crochet N, et al.Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity[J]. J Virol, 2008, 82(1): 335-345. [32] Nasirudeen A M, Liu D X.Gene expression profiling by microarray analysis reveals an important role for caspase-1 in dengue virus-induced p53-mediated apoptosis[J]. J Med Virol, 2009, 81(6): 1069-1081. [33] Valadao A L, Aguiar R S, de Arruda L B. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses[J]. Front Microbiol, 2016, 7: 1233. [34] Nasirudeen A M, Wong H H, Thien P, et al.RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection[J]. PLoS Negl Trop Dis, 2011, 5(1): e926. [35] Brown M G, Mcalpine S M, Huang Y Y, et al.RNA sensors enable human mast cell anti-viral chemokine production and IFN-mediated protection in response to antibody-enhanced dengue virus infection[J]. PLoS One, 2012, 7(3): e34055. [36] Olagnier D, Scholte F E, Chiang C, et al.Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response[J]. J Virol, 2014, 88(8): 4180-4194. [37] Qin C F, Zhao H, Liu Z Y, et al.Retinoic acid inducible gene-I and melanoma differentiation-associated gene 5 are induced but not essential for dengue virus induced type I interferon response[J]. Mol Biol Rep, 2011, 38(6): 3867-3873. [38] Huang X, Yue Y, Li D, et al.Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated Type-I IFN-independent signalling through upregulation of cellular autophagy[J]. Sci Rep, 2016, 6: 22303. [39] Langefeld T, Mohamed W, Ghai R, et al.Toll-like receptors and NOD-like receptors: domain architecture and cellular signalling[J]. Adv Exp Med Biol, 2009, 653:48-57. [40] Feerick C L, Mckernan D P.Understanding the regulation of pattern recognition receptors in inflammatory diseases - a 'Nod' in the right direction[J]. Immunology, 2017, 150(3): 237-247. [41] Philpott D J, Sorbara M T, Robertson S J, et al.NOD proteins: regulators of inflammation in health and disease[J]. Nat Rev Immunol, 2014, 14(1): 9-23. [42] Tan T Y, Chu J J.Dengue virus-infected human monocytes trigger late activation of caspase-1, which mediates pro-inflammatory IL-1beta secretion and pyroptosis[J]. J Gen Virol, 2013, 94(Pt 10): 2215-2220. [43] Hottz E D, Lopes J F, Freitas C, et al.Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation[J]. Blood, 2013, 122(20): 3405-3414. [44] Lien T S, Sun D S, Chang C M, et al.Dengue virus and antiplatelet autoantibodies synergistically induce haemorrhage through Nlrp3-inflammasome and FcgammaRIII[J]. Thromb Haemost, 2015, 113(5): 1060-1070. |