[1] KAZANIETZ MG, DURANDO M, COOKE M.CXCL13 and Its Receptor CXCR5 in Cancer: Inflammation, Immune Response, and Beyond[J]. Front Endocrinol, 2019, 10: 471.
[2] SHI K, HAYASHIDA K, KANEKO M, et al.Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients[J]. J Immunol, 2001, 166(1): 650-655.
[3] DAVID BA, KUBES P.Exploring the complex role of chemokines and chemoattractants in vivo on leukocyte dynamics[J]. Immunol Rev, 2019, 289(1): 9-30.
[4] BEKELE FY, CHIODI F, SUI Y, et al.The Role of CXCL13 in Antibody Responses to HIV-1 Infection and Vaccination[J]. Front Immunol, 2021, 12: 638872.
[5] WANG B, WANG M, AO D, et al.CXCL13-CXCR5 axis: Regulation in inflammatory diseases and cancer[J]. Biochim Biophys Acta Rev Cancer, 2022, 1877(5): 188799.
[6] CARLSEN HS, BAEKKEVOLD ES, MORTON HC, et al.Monocyte-like and mature macrophages produce CXCL13 (B cell-attracting chemokine 1) in inflammatory lesions with lymphoid neogenesis[J]. Blood, 2004, 104(10): 3021-3027.
[7] SCHAERLI P, LOETSCHER P, MOSER B.Cutting edge: induction of follicular homing precedes effector Th cell development[J]. J Immunol, 2001, 167(11): 6082-6086.
[8] HAVENAR-DAUGHTON C, LINDQVIST M, HEIT A, et al.CXCL13 is a plasma biomarker of germinal center activity[J]. Proc Natl Acad Sci U S A, 2016, 113(10): 2702-2707.
[9] DUAN Z, GAO J, ZHANG L, et al.Phenotype and function of CXCR5+CD45RA-CD4+T cells were altered in HBV-related hepatocellular carcinoma and elevated serum CXCL13 predicted better prognosis[J]. Oncotarget, 2015, 6(42): 44239-44253.
[10] LEE JH, CROTTY S.HIV vaccinology: 2021 update[J]. Semin Immunol, 2021, 51: 101470.
[11] VIDYA VIJAYAN KK, KARTHIGEYAN KP, TRIPATHI SP, et al.Pathophysiology of CD4+T-Cell Depletion in HIV-1 and HIV-2 Infections[J]. Front Immunol, 2017, 8: 580.
[12] CROTTY S.T Follicular Helper Cell Biology: A Decade of Discovery and Diseases[J]. Immunity, 2019, 50(5): 1132-1148.
[13] KAW S, ANANTH S, TSOPOULIDIS N, et al.HIV-1 infection of CD4 T cells impairs antigen-specific B cell function[J]. EMBO J , 2020, 39(24): e105594.
[14] OLATUNDE AC, HALE JS, LAMB TJ.Cytokine-skewed Tfh cells: functional consequences for B cell help[J]. Trends Immunol, 2021, 42(6): 536-550.
[15] CAGIGI A, MOWAFI F, PHUONG DANG LV, et al.Altered expression of the receptor-ligand pair CXCR5/CXCL13 in B cells during chronic HIV-1 infection[J]. Blood, 2008, 112(12): 4401-4410.
[16] WIDNEY DP, BREEN EC, BOSCARDIN WJ, et al.Serum levels of the homeostatic B cell chemokine, CXCL13, are elevated during HIV infection[J]. J Interferon Cytokine Res, 2005, 25(11): 702-706.
[17] BARONE F, BOMBARDIERI M, ROSADO MM, et al.CXCL13, CCL21, and CXCL12 expression in salivary glands of patients with Sjogren's syndrome and MALT lymphoma: association with reactive and malignant areas of lymphoid organization[J]. J Immunol, 2008, 180(7): 5130-5140.
[18] LINDQVIST M, VAN LUNZEN J, SOGHOIAN DZ, et al.Expansion of HIV-specific T follicular helper cells in chronic HIV infection[J]. J Clin Invest, 2012, 122(9): 3271-3280.
[19] MEHRAJ V, RAMENDRA R, ISNARD S, et al.CXCL13 as a Biomarker of Immune Activation During Early and Chronic HIV Infection[J]. Front immunol, 2019, 10: 289.
[20] SOK D, LASERSON U, LASERSON J, et al.The effects of somatic hypermutation on neutralization and binding in the PGT121 family of broadly neutralizing HIV antibodies[J]. PLoS Pathog, 2013, 9(11): e1003754.
[21] KLEIN F, DISKIN R, SCHEID JF, et al.Somatic mutations of the immunoglobulin framework are generally required for broad and potent HIV-1 neutralization[J]. Cell, 2013, 153(1): 126-138.
[22] COHEN K, ALTFELD M, ALTER G, et al.Early preservation of CXCR5+ PD-1+ helper T cells and B cell activation predict the breadth of neutralizing antibody responses in chronic HIV-1 infection[J]. J Virol, 2014, 88(22): 13310-13321.
[23] ABELA IA, KADELKA C, TRKOLA A.Correlates of broadly neutralizing antibody development[J]. Curr Opin HIV AIDS, 2019, 14(4): 279-285.
[24] BURTON DR, AHMED R, BAROUCH DH, et al.A Blueprint for HIV Vaccine Discovery[J]. Cell Host Microbe, 2012, 12(4): 396-407.
[25] MABUKA JM, DUGAST AS, MUEMA DM, et al.Plasma CXCL13 but Not B Cell Frequencies in Acute HIV Infection Predicts Emergence of Cross-Neutralizing Antibodies[J]. Front Immunol, 2017, 8: 1104.
[26] GUO AL, JIAO YM, ZHAO QW, et al.Implications of the accumulation of CXCR5(+) NK cells in lymph nodes of HIV-1 infected patients[J]. EBio Medicine, 2022, 75: 103794.
[27] ZEISEL MB, LUCIFORA J, MASON WS, et al.Towards an HBV cure: state-of-the-art and unresolved questions-report of the ANRS workshop on HBV cure[J]. Gut, 2015, 64(8): 1314-1326.
[28] DURANTEL D, ZOULIM F.New antiviral targets for innovative treatment concepts for hepatitis B virus and hepatitis delta virus[J]. J Hepatol, 2016, 64(1): 117-131.
[29] 中华医学会感染病学分会,中华医学会肝病学分会. 慢性乙型肝炎临床治愈(功能性治愈)专家共识[J]. 临床肝胆病杂志, 2019, 35(8): 1693-1701.
[30] PUBLICOVER J, GAGGAR A, NISHIMURA S, et al.Age-dependent hepatic lymphoid organization directs successful immunity to hepatitis B[J]. J Clin Invest, 2013, 123(9): 3728-3739.
[31] ANSEL KM, NGO VN, HYMAN PL, et al.A chemokine-driven positive feedback loop organizes lymphoid follicles[J]. Nature, 2000, 406(6793): 309-314.
[32] LIU C, HUANG X, WERNER M, et al.Elevated Expression of Chemokine CXCL13 in Chronic Hepatitis B Patients Links to Immune Control during Antiviral Therapy[J]. Front Immunol, 2017, 8: 323.
[33] FENG J, LU L, HUA C, et al.High frequency of CD4+ CXCR5+ TFH cells in patients with immune-active chronic hepatitis B[J]. PloS one, 2011, 6(7): e21698.
[34] YOSHIO S, MANO Y, DOI H, et al. Cytokine and chemokine signatures associated with hepatitis B surface antigen loss in hepatitis B patients [J]. JCI insight, 2018, 3(20) :e122268.
[35] LI Y, TANG L, GUO L, et al.CXCL13-mediated recruitment of intrahepatic CXCR5(+)CD8(+) T cells favors viral control in chronic HBV infection[J]. J Hepatol, 2020, 72(3): 420-430.
[36] LI Y, WANG W, TANG L, et al.Chemokine (C-X-C motif) ligand 13 promotes intrahepatic chemokine (C-X-C motif) receptor 5+ lymphocyte homing and aberrant B-cell immune responses in primary biliary cirrhosis[J]. Hepatology, 2015, 61(6): 1998-2007.
[37] LI Y, MA S, TANG L, et al.Circulating chemokine (C-X-C Motif) receptor 5(+) CD4(+) T cells benefit hepatitis B e antigen seroconversion through IL-21 in patients with chronic hepatitis B virus infection[J]. Hepatology, 2013, 58(4): 1277-1286.
[38] WAN Z, LIN X, LI T, et al.Genetic variant in CXCL13 gene is associated with susceptibility to intrauterine infection of hepatitis B virus[J]. Sci Rep, 2016, 6: 26465.
[39] 宋敏,陆普选,方伟军,等. 2022年WHO全球结核病报告:全球与中国关键数据分析[J/CD].新发传染病电子杂志,2023, 8(1):87-92.
[40] NATARAJAN A, BEENA PM, DEVNIKAR AV, et al.A systemic review on tuberculosis[J]. Indian J Tuberc, 2020, 67(3): 295-311.
[41] DEPIANTO DJ, CHANDRIANI S, ABBAS AR, et al.Heterogeneous gene expression signatures correspond to distinct lung pathologies and biomarkers of disease severity in idiopathic pulmonary fibrosis[J]. Thorax, 2015, 70(1): 48-56.
[42] IGNACIO A, BREDA CNS, CAMARA NOS.Innate lymphoid cells in tissue homeostasis and diseases[J]. World J Hepatol, 2017, 9(23): 979-989.
[43] PANDA SK, COLONNA M.Innate Lymphoid Cells in Mucosal Immunity[J]. Front Immunol, 2019, 10: 861.
[44] EBERL G, COLONNA M, DI SANTO JP, et al. Innate lymphoid cells. Innate lymphoid cells: a new paradigm in immunology [J]. Science, 2015, 348(6237): aaa6566.
[45] COLONNA M.Innate Lymphoid Cells: Diversity, Plasticity, and Unique Functions in Immunity[J]. Immunity, 2018, 48(6): 1104-1117.
[46] NARINYAN W, POLADIAN N, ORUJYAN D, et al.Immunologic Role of Innate Lymphoid Cells against Mycobacterial tuberculosis Infection[J]. Biomedicines, 2022, 10(11):2828.
[47] ARDAIN A, DOMINGO-GONZALEZ R, DAS S, et al.Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis[J]. Nature, 2019, 570(7762): 528-532.
[48] ZENG B, XING R, DONG C, et al.Commentary: Group 3 innate lymphoid cells mediate early protective immunity against tuberculosis[J]. Front Immunol, 2020, 11: 1925.
[49] SLIGHT SR, RANGEL-MORENO J, GOPAL R, et al.CXCR5 T helper cells mediate protective immunity against tuberculosis[J]. J Clin Invest, 2013, 123(2): 712-726.
[50] JIANG J, CAO Z, QU J, et al.PD-1-expressing MAIT cells from patients with tuberculosis exhibit elevated production of CXCL13[J]. Scand J Immunol, 2020, 91(4): e12858.
[51] AZKUR AK, AKDIS M, AZKUR D, et al.Immune response to SARS-CoV-2 and mechanisms of immunopathological changes in COVID-19[J]. Allergy, 2020, 75(7): 1564-1581.
[52] 廖康生,卢洪洲. 新型冠状病毒奥密克戎变异株的研究进展:对其科学防控措施的启示[J/CD].新发传染病电子杂志,2022, 7(1):1-5.
[53] WU Z, MCGOOGAN JM.Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention[J]. Jama, 2020, 323(13): 1239-1242.
[54] MEHTA P, MCAULEY DF, BROWN M, et al.COVID-19: consider cytokine storm syndromes and immunosuppression[J]. Lancet, 2020, 395(10229): 1033-1034.
[55] CATANZARO M, FAGIANI F, RACCHI M, et al.Immune response in COVID-19: addressing a pharmacological challenge by targeting pathways triggered by SARS-CoV-2[J]. Signal Transduct Target Ther, 2020, 5(1): 84.
[56] LEISMAN DE, RONNER L, PINOTTI R, et al.Cytokine elevation in severe and critical COVID-19: a rapid systematic review, meta-analysis, and comparison with other inflammatory syndromes[J]. Lancet Respir Med, 2020, 8(12): 1233-1244.
[57] WONG CK, LAM CW, WU AK, et al.Plasma inflammatory cytokines and chemokines in severe acute respiratory syndrome[J]. Clin Exp Immunol, 2004, 136(1): 95-103.
[58] HORSPOOL AM, KIEFFER T, RUSS BP, et al.Interplay of Antibody and Cytokine Production Reveals CXCL13 as a Potential Novel Biomarker of Lethal SARS-CoV-2 Infection[J]. mSphere, 2021, 6(1): e01324-e01420.
[59] PERREAU M, SUFFIOTTI M, MARQUES VP, et al.The cytokines HGF and CXCL13 predict the severity and the mortality in COVID-19 patients[J]. Nat Commun, 2021, 12(1):4888.
[60] JONES JD, HAMILTON BJ, CHALLENER GJ, et al.Serum C-X-C motif chemokine 13 is elevated in early and established rheumatoid arthritis and correlates with rheumatoid factor levels[J]. Arthritis Res Ther, 2014, 16(2): R103.
[61] TRAIANOS EY, LOCKE J, LENDREM D, et al.Serum CXCL13 levels are associated with lymphoma risk and lymphoma occurrence in primary Sjögren's syndrome[J]. Rheumatol Int, 2020, 40(4): 541-548.
[62] FINCH DK, ETTINGER R, KARNELL JL, et al.Effects of CXCL13 inhibition on lymphoid follicles in models of autoimmune disease[J]. Eur J Clin Invest, 2013, 43(5): 501-509. |