人民卫生出版社系列期刊
ISSN 2096-2738 CN 11-9370/R

中国科技核心期刊(中国科技论文统计源期刊)
2020《中国学术期刊影响因子年报》统计源期刊

新发传染病电子杂志 ›› 2023, Vol. 8 ›› Issue (6): 79-83.doi: 10.19871/j.cnki.xfcrbzz.2023.06.015

• 综述 • 上一篇    下一篇

AI技术在儿童肺结核影像诊断中的研究现状与展望

罗梵, 张娜, 李晨曦   

  1. 成都市公共卫生临床医疗中心放射科,四川 成都 610000
  • 收稿日期:2023-08-15 发布日期:2024-01-23
  • 通讯作者: 李晨曦,Email:349501104@qq.com
  • 基金资助:
    四川省医学青年创新科研课题计划(Q21088)

Research status and prospect of artificial intelligence technology in imaging diagnosis of pediatric pulmonary tuberculosis

Luo Fan, Zhang Na, Li Chenxi   

  1. Department of Radiology, Chengdu Public Health Clinical Center, Sichuan Chengdu 610000, China
  • Received:2023-08-15 Published:2024-01-23

摘要: 肺结核是肆虐全球的传染性疾病之一,儿童肺结核也依旧是关系我国儿童、青少年公共健康的重要议题。由于儿童肺结核在临床诊断上缺乏特异性,其早期筛查及诊断具有一定的难度。胸部影像诊断被认为是结核病诊断的有效途径,在儿童肺结核管控中也具有较高的应用价值。近年来,AI技术飞速发展,在医疗领域中的应用也取得了令人瞩目的成效,特别是在大数据处理、降低人力成本、提高临床效能方面作用明显。AI与医学影像的结合模式也逐步应用到了肺结核筛查及诊断中,多种基于影像学检查、以肺结核筛查及诊断为目的的AI算法、软件及诊疗系统应运而生。然而,以往的相关研究多以成人肺结核为主,在儿童肺结核方面缺乏足够的报道。本文客观总结了近年来AI技术在肺结核、儿童肺结核影像诊断中的研究及应用现状,并就其在儿童肺结核领域中的局限性及未来展望进行综述,望日后相应的AI技术开发能更加关注儿童病例。

关键词: 肺结核, 儿童, 人工智能, 影像诊断

Abstract: Tuberculosis remains one of the most prevalent infectious diseases globally, and pediatric tuberculosis continues to be an important issue for the public health of children and adolescents in our country. Due to the lack of specificity in the clinical diagnosis of pediatric tuberculosis, early screening and diagnosis pose certain challenges. Chest imaging diagnosis is considered a practical approach to tuberculosis diagnosis and has high utility in controlling pediatric pulmonary tuberculosis. In recent years, artificial intelligence (AI) technology has rapidly developed and achieved remarkable results in the medical field, particularly in big data processing, reducing manpower costs, and improving clinical efficiency. The integration of AI and medical imaging has gradually been applied to tuberculosis screening and diagnosis, leading to various AI algorithms, software, and diagnostic systems aimed at tuberculosis screening and diagnosis using imaging examinations. Previous studies have mainly focused on adult tuberculosis, with insufficient reports and attention given to pediatric pulmonary tuberculosis. This article primarily summarizes the research and application status of AI technology in the imaging diagnosis of tuberculosis and pediatric pulmonary tuberculosis in recent years and provides an overview of its limitations and future prospects in the field of pediatric pulmonary tuberculosis. It is hoped that future AI development research will pay more attention to children's cases.

Key words: Pulmonary tuberculosis, Pediatric, Artificial intelligence, Imaging diagnosis

中图分类号: