[1] 宋敏, 陆普选, 方伟军, 等. 2022年WHO全球结核病报告:全球与中国关键数据分析[J/CD]. 新发传染病电子杂志, 2023, 8(1): 87-92. [2] BAGCCHI S.WHO's Global Tuberculosis Report 2022[J]. Lancet Microbe, 2023, 4(1): e20. [3] 李蒙, 高谦. 结核病自然史的阶段划分及其诊断的现状与展望[J]. 中国防痨杂志, 2021, 43(11): 1125-1131. [4] NAIDOO J, SHELMERDINE SC, CHARCAPE CFU, et al.Artificial Intelligence in Paediatric Tuberculosis[J]. Pediatr Radiol, 2023, 53(9):1733-1745. [5] SODHI K, BHALLA A, MAHOMED N, et al.Imaging of thoracic tuberculosis in children: current and future directions[J]. Pediatr Radiol, 2017, 47(10): 1260-1268. [6] MANSON D.MR imaging of the chest in children[J]. Acta Radiol, 2013, 54(9): 1075-1085. [7] SODHI K, SHARMA M, SAXENA A, et al.MRI in Thoracic Tuberculosis of Children[J]. Indian J Pediatr, 2017, 84(9): 670-676. [8] PEPRAH K, ANDRONIKOU S, GOUSSARD P.Characteristic magnetic resonance imaging low T2 signal intensity of necrotic lung parenchyma in children with pulmonary tuberculosis[J]. J Thorac Imaging, 2012, 27(3): 171-174. [9] SODHI K, CIET P, VASANAWALA S, et al.Practical protocol for lung magnetic resonance imaging and common clinical indications[J]. Pediatr Radiol, 2022, 52(2): 295-311. [10] CONCEPCION N, LAYA B, ANDRONIKOU S, et al.Imaging recommendations and algorithms for pediatric tuberculosis: part 1-thoracic tuberculosis[J]. Pediatr Radiol, 2023, 53(9): 1773-1781. [11] JAEGER S, KARARGYRIS A, CANDEMIR S, et al.Automatic screening for tuberculosis in chest radiographs: a survey[J]. Quant Imaging Med Surg, 2013, 3(2): 89-99. [12] 马依迪丽•尼加提,阿里木江•阿卜杜凯尤木,米日古丽•达毛拉,等.基于人工智能肺结核筛查技术在基层医院影像诊断中的应用价值[J/CD].新发传染病电子杂志,2021,6(2):137-141. [13] LURE FYM, JAEGER S, ANTANI S, 等. 自动化显微镜检测和数字化胸片诊断系统在肺结核筛查中的应用[J/CD]. 新发传染病电子杂志, 2017,2(1):5-9. [14] ZAIDI S, HABIB S, VAN GINNEKEN B, et al.Evaluation of the diagnostic accuracy of Computer-Aided Detection of tuberculosis on Chest radiography among private sector patients in Pakistan[J]. Sci Rep, 2018, 8(1): 12339. [15] RAHMAN M, CODLIN A, RAHMAN M, et al.An evaluation of automated chest radiography reading software for tuberculosis screening among public- and private-sector patients[J]. Eur Respir J, 2017, 49(5): 1602159 [16] XU T, CHENG I, LONG R, et al.Novel coarse-to-fine dual scale technique for tuberculosis cavity detection in chest radiographs[J]. EURASIP Journal on Image and Video Processing, 2013, 2013(1): 3. [17] MELENDEZ J, HOGEWEG L, SÁNCHEZ CI, et al. Accuracy of an automated system for tuberculosis detection on chest radiographs in high-risk screening[J]. Int J Tuberc Lung Dis, 2018, 22(5):567-571. [18] JAEGER S, KARARGYRIS A, ANTANI S, et al.Detecting tuberculosis in radiographs using combined lung masks[J]. Annu Int Conf IEEE Eng Med Biol Soc, 2012, 2012: 4978-4981. [19] MOUTON A, PITCHER R, DOUGLAS T.Computer-aided detection of pulmonary pathology in pediatric chest radiographs[J]. Med Image Comput Comput Assist Interv, 2010, 13(pt3):619-625. [20] PALMER M, SEDDON J, VAN DER ZALM M, et al. Optimising computer aided detection to identify intra-thoracic tuberculosis on chest x-ray in South African children[J]. PLOS Glob Public Health, 2023, 3(5): e0001799. [21] KULKARNI S, JHA S. Artificial Intelligence, Radiology, and Tuberculosis: A Review[J]. Acad Radiol, 2020, 27(1): 71-75. [22] NGIAM K, KHOR I.Big data and machine learning algorithms for health-care delivery[J]. Lancet Oncol, 2019, 20(5): e262-e273. [23] LAKHANI P, SUNDARAM B.Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks[J]. Radiology, 2017, 284(2): 574-582. [24] SANTOSH K, ALLU S, RAJARAMAN S, et al.Advances in Deep Learning for Tuberculosis Screening using Chest X-rays: The Last 5 Years Review[J]. J Med Syst, 2022, 46(11): 82. [25] 单连峰, 郭芳. 基于深度学习卷积神经网络的肺结核CT辅助诊断模型在临床中的应用价值[J]. 中国新通信, 2022, 24(24): 126-128. [26] 闫明艳,陈根铭, 赖超, 等. 人工智能对肺结核患者病变检出及定性诊断价值研究 [J/CD]. 新发传染病电子杂志, 2018, 3(4): 214-217. [27] MA L, WANG Y, GUO L, et al.Developing and verifying automatic detection of active pulmonary tuberculosis from multi-slice spiral CT images based on deep learning[J]. J Xray Sci Technol, 2020, 28(5): 939-951. [28] SCHALEKAMP S, KLEIN W, VAN LEEUWEN K.Current and emerging artificial intelligence applications in chest imaging: a pediatric perspective[J].Pediatr Radiol, 2022, 52(11): 2120-2130. [29] KIM Y, PARK J, HWANG E, et al.Applications of artificial intelligence in the thorax: a narrative review focusing on thoracic radiology[J]. J Thorac Dis, 2021, 13(12): 6943-6962. |