[1] VAN NIEL G, D’ANGELO G, RAPOSO G. Shedding light on the cell biology of extracellular vesicles[J]. Nat Rev Mol Cell Biol, 2018, 19(4): 213-228. [2] DOYLE LM, WANG MZ.Overview of Extracellular Vesicles, Their Origin, Composition, Purpose, and Methods for Exosome Isolation and Analysis[J]. Cells, 2019, 8(7): 727. [3] HESSVIK NP, LLORENTE A.Current knowledge on exosome biogenesis and release[J]. Cell Mol Life Sci, 2018, 75(2): 193-208. [4] NOUR AM, LI Y, WOLENSKI J, et al.Viral Membrane Fusion and Nucleocapsid Delivery into the Cytoplasm are Distinct Events in Some Flaviviruses[J]. PLoS Pathog, 2013, 9(9): e1003585. [5] MARTINS S de T, ALVES LR. Extracellular Vesicles in Viral Infections: Two Sides of the Same Coin?[J]. Front Cell Infect Microbiol, 2020, 10: 593170. [6] VEDASHREE R, CHRISTINE T, ISABEL F, et al.Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells[J]. Proc Natl Acad Sci USA, 2013, 110(32):13109-13113. [7] VORA A, ZHOU W, LONDONO-RENTERIA B, et al.Arthropod EVs mediate dengue virus transmission through interaction with a tetraspanin domain containing glycoprotein Tsp29Fb[J]. Proc Natl Acad Sci USA, 2018, 115(28): E6604-E6613. [8] MAJOR CG, PAZ-BAILEY G, HILLS SL, et al.Risk Estimation of Sexual Transmission of Zika Virus-United States, 2016-2017[J]. J Infect Dis, 2021, 224(10): 1756-1764. [9] 崔晓云, 吴艳花, 安静. 寨卡病毒分子生物学特征与寨卡病毒病的主要临床症状[J/CD]. 新发传染病电子杂志, 2018, 3(2): 91-94. [10] MARTÍNEZ-ROJAS PP, QUIROZ-GARCÍA E, MONROY-MARTÍNEZ V, et al. Participation of Extracellular Vesicles from Zika-Virus-Infected Mosquito Cells in the Modification of Naïve Cells’ Behavior by Mediating Cell-to-Cell Transmission of Viral Elements[J]. Cells, 2020, 9(1): E123. [11] YUAN D, ZHAO Y, BANKS WA, et al.Macrophage exosomes as natural nanocarriers for protein delivery to inflamed brain[J]. Biomaterials, 2017, 142: 1-12. [12] FIKATAS A, DEHAIRS J, NOPPEN S, et al.Deciphering the Role of Extracellular Vesicles Derived from ZIKV-Infected hcMEC/D3 Cells on the Blood-Brain Barrier System[J]. Viruses, 2021, 13(12): 2363. [13] HOLDER B, JONES T, SANCHO SHIMIZU V, et al.Macrophage Exosomes Induce Placental Inflammatory Cytokines: A Novel Mode of Maternal-Placental Messaging[J]. Traffic, 2016, 17(2): 168-178. [14] BAYER A, LENNEMANN NJ, OUYANG Y, et al.Chromosome 19 microRNAs exert antiviral activity independent from type III interferon signaling[J]. Placenta, 2018, 61: 33-38. [15] HAMEL R, DEJARNAC O, WICHIT S, et al.Biology of Zika Virus Infection in Human Skin Cells[J]. J Virol, 2015, 89(17): 8880-8896. [16] LI S, ZHU A, REN K, et al.IFNβ-induced exosomes linc-EPHA6-1 promotes cytotoxicity of NK cells by acting as a ceRNA for hsa-miR-4485-5p to up-regulate NKp46 expression[J]. Life Sci, 2020, 257: 118064. [17] SIQUEIRA WL, MOFFA EB, MUSSI MCM, et al.Zika virus infection spread through saliva--a truth or myth?[J]. Braz Oral Res, 2016, 30: S1806-83242016000100801. [18] CONZELMANN C, GROSS R, ZOU M, et al.Salivary extracellular vesicles inhibit Zika virus but not SARS-CoV-2 infection[J]. J Extracell Vesicles, 2020, 9(1): 1808281. [19] MÜLLER JA, HARMS M, KRÜGER F, et al. Semen inhibits Zika virus infection of cells and tissues from the anogenital region[J]. Nat Commun, 2018, 9(1): 2207. [20] WANG R, GORNALUSSE GG, KIM Y, et al.Potent Restriction of Sexual Zika Virus Infection by the Lipid Fraction of Extracellular Vesicles in Semen[J]. Front Microbiol, 2020, 11: 574054. [21] ZOU X, YUAN M, ZHANG T, et al.EVs Containing Host Restriction Factor IFITM3 Inhibited ZIKV Infection of Fetuses in Pregnant Mice through Trans-placenta Delivery[J]. Mol Ther, 2021, 29(1): 176-190. [22] ZHANG R, FU Y, CHENG M, et al.sEVsRVG selectively delivers antiviral siRNA to fetus brain, inhibits ZIKV infection and mitigates ZIKV-induced microcephaly in mouse model[J]. Mol Ther, 2022, 30(5): 2078-2091. [23] BLOCK LN, SCHMIDT JK, KEULER NS, et al.Zika virus impacts extracellular vesicle composition and cellular gene expression in macaque early gestation trophoblasts[J]. Sci Rep, 2022, 12(1): 7348. [24] GUZMAN MG, GUBLER DJ, IZQUIERDO A, et al.Dengue infection[J]. Nat Rev Dis Pri, 2016, 2: 16055. [25] REYES-RUIZ JM, OSUNA-RAMOS JF, DE JESÚS-GONZÁLEZ LA, et al. Isolation and characterization of exosomes released from mosquito cells infected with dengue virus[J]. Virus Res, 2019, 266: 1-14. [26] MISHRA R, LAHON A, BANERJEA AC.Dengue Virus Degrades USP33-ATF3 Axis via Extracellular Vesicles to Activate Human Microglial Cells[J]. J Immunol, 2020, 205(7): 1787-1798. [27] WU YW, METTLING C, WU SR, et al.Autophagy-associated dengue vesicles promote viral transmission avoiding antibody neutralization[J]. Sci Rep, 2016, 6: 32243. [28] VERVAEKE P, VERMEIRE K, LIEKENS S.Endothelial dysfunction in dengue virus pathology[J]. Rev Medl Virol, 2015, 25(1): 50-67. [29] VELANDIA-ROMERO ML, CALDERÓN-PELÁEZ MA, BALBÁS-TEPEDINO A, et al. Extracellular vesicles of U937 macrophage cell line infected with DENV-2 induce activation in endothelial cells EA.hy926[J]. PLOS ONE, 2020, 15(1): e0227030. [30] HOTTZ ED, LOPES JF, FREITAS C, et al.Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation[J]. Blood, 2013, 122(20): 3405-3414. [31] SUNG PS, HUANG TF, HSIEH SL.Extracellular vesicles from CLEC2-activated platelets enhance dengue virus-induced lethality via CLEC5A/TLR2[J]. Nat Commun, 2019, 10(1): 2402. [32] TAMBYAH PA, CHING CS, SEPRAMANIAM S, et al.microRNA expression in blood of dengue patients[J]. Ann Clin Biochem, 2016, 53(Pt 4): 466-476. [33] MARTINS S de T, KUCZERA D, LÖTVALL J, et al. Characterization of Dendritic Cell-Derived Extracellular Vesicles During Dengue Virus Infection[J]. Front Microbiol, 2018, 9: 1792. [34] ZHANG H, LI W, WANG J, et al.NS1-based tests with diagnostic utility for confirming dengue infection: a meta-analysis[J]. Int J Infect Dis:, 2014, 26: 57-66. [35] SAFADI DE, LEBEAU G, LAGRAVE A, et al.Extracellular Vesicles Are Conveyors of the NS1 Toxin during Dengue Virus and Zika Virus Infection[J]. Viruses, 2023, 15(2): 364. [36] 赵杰, 刘建英, 程功. 登革病毒非结构蛋白NS1研究进展[J/CD]. 新发传染病电子杂志, 2018, 3(2): 67-71. [37] ZHU X, HE Z, YUAN J, et al.IFITM3-containing exosome as a novel mediator for anti-viral response in dengue virus infection[J]. Cell Microbiol, 2015, 17(1): 105-118. [38] YENUGANTI V R, AFROZ S, KHAN RA, et al.Milk exosomes elicit a potent anti-viral activity against dengue virus[J]. J Nanobiotechnol, 2022, 20(1): 317. [39] SCHWARZ ER, LONG MT.Comparison of West Nile Virus Disease in Humans and Horses: Exploiting Similarities for Enhancing Syndromic Surveillance[J]. Viruses, 2023, 15(6): 1230. [40] SNYDER RE, COOKSEY GS, KRAMER V, et al.West Nile Virus-Associated Hospitalizations, California, 2004-2017[J]. Clin Infect Dis, 2021, 73(3): 441-447. [41] SLONCHAK A, CLARKE B, MACKENZIE J, et al.West Nile virus infection and interferon alpha treatment alter the spectrum and the levels of coding and noncoding host RNAs secreted in extracellular vesicles[J]. BMC genomics, 2019, 20(1): 474. [42] ZHOU Y, WANG X, SUN L, et al.Toll-like receptor 3-activated macrophages confer anti-HCV activity to hepatocytes through exosomes[J]. FASEB J, 2016, 30(12): 4132-4140. [43] THOUNAOJAM MC, KAUSHIK DK, KUNDU K, et al.MicroRNA-29b modulates Japanese encephalitis virus-induced microglia activation by targeting tumor necrosis factor alpha-induced protein 3[J]. J Neurochem, 2014, 129(1): 143-154. [44] LI F, WANG Y, YU L, et al.Viral Infection of the Central Nervous System and Neuroinflammation Precede Blood-Brain Barrier Disruption during Japanese Encephalitis Virus Infection[J]. J Virol, 2015, 89(10): 5602-5614. [45] GOSWAMI S, BANERJEE A, KUMARI B, et al.Differential Expression and Significance of Circulating microRNAs in Cerebrospinal Fluid of Acute Encephalitis Patients Infected with Japanese Encephalitis Virus[J]. Mol Neurobiol, 2017, 54(2): 1541-1551. [46] MUKHERJEE S, AKBAR I, KUMARI B, et al.Japanese Encephalitis Virus-induced let-7a/b interacted with the NOTCH-TLR7 pathway in microglia and facilitated neuronal death via caspase activation[J]. J Neurochem, 2019, 149(4): 518-534. [47] NAZMI A, MUKHERJEE S, KUNDU K, et al.TLR7 is a key regulator of innate immunity against Japanese encephalitis virus infection[J]. Neurobiol Dise, 2014, 69: 235-247. |