[1] World Health Organization.Global tuberculosis report 2018[EB/OL].[2018-0-18]. http://www.who.int/tb/publications/global_report/en/ . [2] SINGH A K, GUPTA U D.Animal models of tuberculosis: Lesson learnt[J]. The Indian journal of medical research, 2018, 147(5): 456-63. [3] FAZAL M I, PATEL M E, TYE J, et al.The past, present and future role of artificial intelligence in imaging[J]. Eur J Radiol, 2018, 105: 246-250. [4] NISHIKAWA R M.Current status and future directions of computer-aided diagnosis in mammography[J]. Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society, 2007, 31(4-5): 224-235. [5] KLIGERMAN S, CAI L, WHITE C S.The effect of computer-aided detection on radiologist performance in the detection of lung cancers previously missed on a chest radiograph[J]. Journal of thoracic imaging, 2013, 28(4): 244-252. [6] MASSALHA S, CLARKIN O, THORNHILL R, et al.Decision Support Tools, Systems, and Artificial Intelligence in Cardiac Imaging[J]. The Canadian journal of cardiology, 2018, 34(7): 827-838. [7] XIONG Y, BA X, HOU A, et al.Automatic detection of mycobacterium tuberculosis using artificial intelligence[J]. Journal of thoracic disease, 2018, 10(3): 1936-1940. [8] Y.M.LURE F, JAEGER S, ANTANI S, et al. 自动化显微镜检测和数字化胸片诊断系统在肺结核筛查中的应用[J]. 新发传染病电子杂志, 2017, 2(1): 5-9. [9] LAKHANI P, SUNDARAM B.Deep Learning at Chest Radiography: Automated Classification of Pulmonary Tuberculosis by Using Convolutional Neural Networks[J]. Radiology, 2017, 284(2): 574-582. [10] KIM D H, WIT H, THURSTON M.Artificial intelligence in the diagnosis of Parkinson's disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning[J]. Nuclear Medicine Communications, 2018, 39(10):887-893. [11] CHUNG S W, HAN S S, LEE J W, et al.Automated detection and classification of the proximal humerus fracture by using deep learning algorithm[J]. Acta orthopaedica, 2018, 89(4): 468-473. [12] BARBIERI C, MOLINA M, PONCE P, et al.An international observational study suggests that artificial intelligence for clinical decision support optimizes anemia management in hemodialysis patients[J]. Kidney International, 2016, 90(2): 422-429. [13] PARK W J, PARK J-B.History and application of artificial neural networks in dentistry[J]. European Journal of Dentistry, 2018, 12(4): 594-601. [14] HOSNY A, PARMAR C, QUACKENBUSH J, et al.Artificial intelligence in radiology[J]. Nature reviews Cancer, 2018, 18(8): 500-510. [15] PESAPANE F, CODARI M, SARDANELLI F.Artificial intelligence in medical imaging: threat or opportunity? Radiologists again at the forefront of innovation in medicine[J]. European Radiology Experimental, 2018, 2(1): 35. |