[1] 约翰·霍普金斯大学.全球COVID死亡人数刚刚超过400万[N/OL].[2021-7-9]. https://www.sohu.com/a/476378204_120393261. [2] YALCIN AD, YALCIN AD.Future perspective: biologic agents in patients with severe COVID-19[J]. Immunopharmacol Immunotoxicol, 2021,43(1): 1-7. [3] ZHANG C, WU Z, LI JW, et al.Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality[J]. IntJAntimicrob Agents, 2020,55(5): 105954. [4] 宋玉燕, 黄长先, 周璐, 等. 中西医结合疗法治疗31例重型新型冠状病毒肺炎临床疗效分析[J/CD]. 新发传染病电子杂志, 2020, 5(4): 239-242. [5] NI L, CHEN L, HUANG X, et al.Combating COVID-19 with integrated traditional Chinese and Western medicine in China[J]. Acta Pharm Sin B, 2020, 10(7): 1149-1162. [6] YU R, CHEN L, LAN R, et al.Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking[J]. Int J Antimicrob Agents, 2020,56(2): 106012. [7] 李松涛, 葛岚岚, 肖凌云, 等. 金银花化学成分的抗病毒作用研究进展[J/CD]. 新发传染病电子杂志, 2020, 5(2): 136-139. [8] WAN Y, XU L, LIU Z, et al.Utilising network pharmacology to explore the underlying mechanism of Wumei Pill in treating pancreatic neoplasms[J]. BMC Complem Altern Med, 2019, 19(1):158. [9] CHEN J, WANG YK, GAO Y,et al.Protection against COVID-19 injury by qingfei paidu decoction via anti-viral, anti-inflammatory activity and metabolic programming[J]. Biomed Pharmacother, 2020, 129:110281. [10] PENG Y, WU D, LI F, et al.Identification of key biomarkers associated with cell adhesion in multiple myeloma by integrated bioinformatics analysis[J]. Canc Cell Int, 2020, 20: 262. [11] JEON YJ, KIM HJ.Duox2-induced innate immune responses in the respiratory epithelium and intranasal delivery of Duox2 DNA using polymer that mediates immunization[J]. Appl Microbiol Biotech, 2018, 102(10): 4339-4343. [12] YAN M, HOU M, LIU J, et al.Regulation of iNOS-Derived ROS Generation by HSP90 and Cav-1 in Porcine Reproductive and Respiratory Syndrome Virus-Infected Swine Lung Injury[J]. Inflamm, 2017,40(4): 1236-1244. [13] SALEH J, PEYSSONNAUX C, SINGH KK, et al.Mitochondria and microbiota dysfunction in COVID-19 pathogenesis[J]. Mitochondr, 2020,54: 1-7. [14] PANG Z, ZHOU G, CHONG J,et al.Comprehensive Meta-Analysis of COVID-19 Global Metabolomics Datasets[J]. Metab, 2021, 11(1): 44. [15] LAFORGE M, ELBIM C, FRERE C, et al.Tissue damage from neutrophil-induced oxidative stress in COVID-19[J]. Nat Rev Immunol, 2020, 20(9):515-516. [16] LU QB.Reaction Cycles of Halogen Species in the Immune Defense: Implications for Human Health and Diseases and the Pathology and Treatment of COVID-19[J]. Cells, 2020, 9(6):1461. [17] ZHOU RR, LIU XH, Chen L, et al.Comparison of the Antioxidant Activities and Phenolic Content of Five Lonicera Flowers by HPLC-DAD/MS-DPPH and Chemometrics[J]. Int J Anal Chem, 2020,2020: 2348903. [18] OPARKA M, WALCZAK J, MALINSKA D, et al.Quantifying ROS levels using CM-H2DCFDA and HyPer[J]. Methods (San Diego, Calif.), 2016,109: 3-11. [19] TAKEDA TA, SASAI M, ADACHI Y, et al.Potential role of heme metabolism in the inducible expression of heme oxygenase-1[J]. Biochim Bioph Acta Gen Subj, 2017, 1861(7): 1813-1824. [20] HOOPER PL.COVID-19 and heme oxygenase: novel insight into the disease and potential therapies[J]. Cell Stress Chaper, 2020,25(5): 707-710. |